

Estimation de profondeur monoculaire avec un réseau adversaire

Marcela Carvalho^{1,2}, Bertrand Le Saux¹, Pauline Trouvé-Peloux¹, Andrés Almansa², Frédéric Champagnat¹

ONERA/DTIS¹, Université Paris Descartes²

Contexte

 \blacktriangleright La **perception 3D** à partir d'**une seule image** est aujourd'hui un problème majeur de la vision par ordinateur. Les approches actuelles pour l'estimation de profondeur demandent plusieurs capteurs et ont souvent des **limitations** selon l'environnement (soleil, texture).

État de l'art :

- \blacktriangleright Eigen et al. [3] (architecture multi-échelle);
- \blacktriangleright Laina et al. [4] (*Residual Network*-ResNet et perte berHu);
- \blacktriangleright Xu et al. [5] (**ResNet** et *Conditional Random Fields*-CRF).

machine learning obtient actuellement des résultats étonnants sur de nombreuses applications en vision par ordinateur. Nous proposons alors l'exploration de ces méthodes.

 \blacktriangleright Les réseaux génératives adversaires (GANs) [2] sont capables de générer des images réalistes à partir d'un bruit, sans la définition implicite d'une fonction de perte, en apprenant une métrique dans l'espace des images.

L'apprentissage adversaire conditionnel

Les GANs sont composés de deux réseaux avec des objectifs adversaires : le générateur (G), entraîné à générer des images réalistes par rapport à la vérité terrain (VT); et le **discriminateur** (D), un classificateur binaire entraîné à indiquer si l'image à son entrée est réelle ou artificielle. Après l'entraînement, seul le générateur est utilisé pour estimer la sortie.

Les GANs conditionnels (cGANs) renforcent le réalisme des sorties à l'aide d'un élément d'entrée supplémentaire à G et D (e.g. label, image).

Motivation :

Rendre le réseau capable d'apprendre tout seul à générer des cartes de profondeur **réalistes**.

Notre contribution :

Utiliser un réseau profond du type **codeur-décodeur** couplé avec un **en**trainement adversaire conditionnel (cGAN) pour l'estimation de profondeur monoculaire.

Validation du cGAN pour la profondeur

Nous avons testé une architecture similaire à Isola *at al.* [6] sur la **base de** données NYU-v2 [7] en faisant varier la taille de la base d'apprentissage. L'ajout d'une **perte L1** à la sortie du générateur guide l'entraînement pour générer des images plus lisses.

Division	Perte	Erreur	Précision		
		rel rms	$\delta < 1.25\delta < 1.25^2 \delta < 1.25^3$		
NYUv2-795	cGAN+L1	0.306 1.040	51.8%80.5% 92.4%		
NYUv2-12k	cGAN+L1	0.246 0.887	60.8%86.0% 95.2%		
NYUv2-230k	cGAN+L1	0.240 0.864	62.8%87.2% 95.5%		

→ Objectif du discriminateur :

 $\theta_D = max(\mathbb{E}_{x, y \sim p_{donnees}(x, y)}[log D(x, y)]$ $+ \mathbb{E}_{x \sim p_{donnees}(x)} [1 - \log D(x, G(x))]).$

→ Objectif du générateur :

 $\theta_G = max(\mathbb{E}_{x \sim p_{donnees}(x)}[log D(x, G(x))]).$

- \blacktriangleright Validation du concept;
- \blacktriangleright Performances augmentent avec le nombre d'exemples.

Travaux en cours : un réseau dédié

Notre approche : → Réseau plus profond (U-net basée sur VGG-16); \longrightarrow Least Square GAN (LSGAN).

Architecture G	Réseau-base	# données	Erreur			Précision	
			rel	log10	rms	rmslog	$\delta < 1.25 \ \delta < 1.25^2 \ \delta < 1.25^3$
Wang $et \ al. [8]$	VGG-16	2M	0.220	0.094	0.745	0.262	$60.5\%\ 89.0\%\ 97.0\%$
Laina $et al. [4]$		95k	0.194	0.083	0.790	_	$62.9\%\ 88.9\%\ 97.1\%$
Liu $et al. [9]$		795	0.213	-	0.087	0.759	$65.0\%\ 90.6\%\ 97.6\%$
Notre approche		12k	0.204	-	0.768	_	$69.2\%\ 90.6\%\ 96.9\%$
Xu $et al. [5]$		4.7k	0.169	0.071	0.673	_	69.8%92.2%98.1%
Notre approche		230k	0.191	-	0.745	_	$71.4\%\ 91.1\%\ 97.3\%$
Eigen $et al.$ [3]		2M	0.158	-	0.641	0.214	$76.9\% \ 95.0\% \ 98.8\%$
Laina $et \ al. \ [4]$	ResNet	95k	0.127	0.055	0.573	0.195	81.1% 95.3% 98.8%
Xu <i>et al.</i> [5]		96k	0.121	0.052	0.586	_	81.1% 95.4% 98.7%

► Performances comparables à l'état de l'art;

➡ Images plus réalistes (Fig. 1).

Fig. 1 Comparaison qualitative des différentes approches pour la prédiction de profondeur

Perspectives

- \blacktriangleright Utilisation de réseaux plus profonds (*e.g.* ResNet, DenseNet);
- \blacktriangleright Approche multiscale.

monoculaire

Bibliographie

- deep networks for monocular depth estimation," CVPR, 2017. [1] O. Ronneberger, P. Fischer, and T. Brox, "U-net : Convolutional networks for biomedical image segmentation," MICCAI, 2015. [6] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional
- [2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, adversarial networks," CVPR, 2017. and Y. Bengio, "Generative adversarial nets," NIPS, 2014.
- [3] D. Eigen and R. Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a inference from rgbd images," in ECCV, 2012. Common Multi-Scale Convolutional Architecture," ICCV, 2015.
- [4] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper depth prediction" with fully convolutional residual networks," in 3D Vision (3DV). IEEE, 2016.
 - [5] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, "Multi-scale continuous crfs as sequential
- [7] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, "Indoor segmentation and support
 - [8] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, "Towards unified depth and semantic prediction from a single image," in CVPR, 2015.
 - [9] F. Liu, C. Shen, G. Lin, and I. D. Reid, "Learning Depth from Single Monocular Images" Using Deep Convolutional Neural Fields," TPAMI, 2015.